小数乘小数教案

时间:2026-02-17 23:31:07
小数乘小数教案

小数乘小数教案

作为一名默默奉献的教育工作者,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。教案要怎么写呢?以下是小编帮大家整理的小数乘小数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

  小数乘小数教案 篇1

目的要求(知识目标,能力目标,思想目标)

1.使学生熟练进行小数的乘法计算,懂得在点积的小数点时,位数不够佣补足。

2.掌握小数乘法的验算方法,能正确进行积和第一个因数比较大小。

内容分析(重点、难点、关键)

1.点积的小数点时,位数不够时用0补足。

2.小数乘法的`验算方法。

教具学具

小黑板 、投影 、卡片

教学方式

启发式教学

教学程序(教学过程的设计)

一.创境准备:

1.出示练习题,说一说根据什么说出积有几位小数?

2.口算(卡片)

3.全班练(指名板演计算过程)。

二.探索研究:

1.计算:0.056x0.15

2.师生质疑:计算中遇到什么新?问题这样点积的小数点?

出示投影 让学生发表意见在肯定:

0. 0 5 6 0. 0 5 6

x 0.1 5 x 0.1 5

2 8 0 2 8 0

5 6 5 6

8 4 0 0. 0 0 8 4 0

小结:点小数点时,乘得积的小数位数不够时,要在前面用“0‘补足,补足后小数的末尾”多”要划去。

交换例3因数位置再乘一遍。

小结:总结出小数乘法的验算方法:

3. 出示例4:一个奶牛场八月份产奶18.5吨,九月份的产量是八月份到2.4 倍,九月份产奶多少吨?

读题,理解2.4倍表示的意义。

列式,算式表示什么?

4. 引导学生比较例3 和例4的积与第一个因数的大小。

(1)例3 第二个因数(0.15)比1 时,积(0.0084)

比第一个因数(0.056) ;

例4 第二个因数(2.4)比1 时,积(44.4)比第一个因数(18.5)。

(2)为什么第一个因数要“0除外”?

三. 实践创新:

1. 大家练,课本3页做一做:(指名板演)

0.32x0.25 2.6x1.08

2. 在下面各题积上点小数点:

0 . 0 2 5 2 . 0 0 5

x 0.1 8 x 0 . 0 0 9

2 0 0 1 8 0 4 5

2 5

4 5 0

个人见解

一个数乘小数

板书设计 例3:0.056x0.15=0.0084

0 . 0 5 6

x 0 .1 5

2 8 0

5 6

0 .0 08 4 0

例4一个奶牛场八月份产奶

18.5吨,九月份的产量是八月份

的2.4倍。九月份产奶多少吨?

18.5x2.4= (吨)

答:九月份产奶 吨。

教学反思

  小数乘小数教案 篇2

教学目标:

1、知识与技能:理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。

2、过程与方法:结合具体事物,经历自主探索小数乘小数的的计算方法的过程。

3、情感态度与价值观:积极参加数学活动,培养迁移类推能力,获得借助计算器和运用自己的知识解决问题的成功体验。

教学重点:

掌握小数乘小数的方法,会熟练的进行笔算。掌握小数末尾的0的处理方法。

教学难点

因数的小数位数与积的小数位数的关系。

教学准备:多媒体课件

教学过程的设计

一.情境导入

1、师:同学们,如今我们的生活水平有了很大的提高,住房条件也有了很大的改善,很多同学都住进了新房,聪聪家最近也换了套新房,现在老师就带你们去看看。瞧!这就是聪聪家的客厅。(课件出示)通过观察平面图,你想知道什么?能提出什么数学问题?

(设计意图:直接导入,课件展示聪聪家的客厅平面图,容易激发学生学习的兴趣,进而诱发学生主动解决问题的内驱力。)

2、生提问题。

3、师:同学们提出了很多有价值的问题。如果要求的聪聪家客厅的面积有多大,该怎样列式呢?(板书:4.8×3.6)观察算式的两个因数,你发现了什么?

生:算式的两个因数都是小数。

生:两个因数都是一位小数。

4、师:同学们观察的很仔细,今天我们就来探讨“小数乘小数的计算方法”。板书课题:小数乘小数

(设计意图:从计算房间的面积这一实际问题引入,容易激发学生的学习兴趣。小数乘小数的重点是小数点的书写位置,让学生观察题中因数的特点,主要目的是为了确定积中小数的位数打基础。)

二、探究新知

1、推导笔算方法

①、提出估算要求,师:计算之前我们先估算一下,聪聪家的客厅面积大约是多少平方米?让学生说一说自己是怎样想的?

生:把3.6看作4,把4.5看作5因此:3.6×4.8≈20

也就是说聪聪家客厅的面积不到20平方米。

(设计意图:培养学生估算的意识,使学生养成“先估算,在计算”的习惯,提高计算的正确率,未确定竖式计算结果做铺垫。)

②、提出竖式计算的要求,讨论两个因数都是一位小数怎么办?

教师板书:

4.8

× 3.6

1、回忆小数乘整数的计算方法.

2、提问:两个因数都是一位小数怎么计算?可以转换成整数乘法来计算吗?

3、让学生说出算理,独立试一试,指名汇报答案。学生上台板演。

4、确定积的小数点的'位置,并说明理由。

(设计意图:“问题讨论”是学生把已有的知识迁移到新知识的过程,是理解算理的过程,是发展学生教学思维的过程。)

③、分析算理。

我们一起在原式上做一做。(边说边板书)

思考:1.乘数中的两个因数是如何转化成整数计算的?

2.用整数相乘的方法算出48×36的积以后怎么办?

3.要得到原来的积,应该怎么办?

4、小数点应该点到哪里呢?

教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1728除以100,从 ……此处隐藏16494个字……>(二)解决问题1。

1、尝试。

激发:0.8×3就是小数乘整数,能不能自己想办法算出得数?先想一想,再在练习本上算一算。算好了,请举手。

学生思考、计算,教师巡视了解学生用的方法。

2、交流。

师:算好了,谁先来说说?

生1:用加法:0.8+0.8+0.8=2.4。

引导:板书0.8+0.8+0.8,问:怎么算?想三八二十四,写4进2。

3个0.8相加算出结果,也就是0.8×3表示什么?

说明:是的,小数乘法的意义和整数乘法的意义相同。

生2:0.8元=8角8×3=24角24角=2.4元

引导:你有想到这种方法吗?有想到的请举手。问:为什么要把0.8元换算成8角?也就是把小数0.8换算成了整数8。(板书:小数―整数)

评价:很好,能用元角分的单位换算,计算出结果。

生3:因为8×3=24,所以0.8×3=2.4。

引导:有这样想过的请举手。你是怎么想的?这样想有没有什么道理呢?我们一起来看,这里的.8根据小数的意义,可以看做…(8个0.1),8个0.1乘3就是…24个0.1,24个0.1就是2.4。是这样吗?

评价:能把新知识转化成了旧知识。(引导语:0.8乘3是求几个0.8相加的和?0.8元也可以看成是几角?)

3、比较。

师:比较一下这两种方法,在算0.8×3时,有什么相同的地方?都想到了什么?〖8×3〗也就是都把小数乘整数变成了…整数乘整数。

4、列竖式。

师:还有不同的算法吗?你说我来写,先写…0.8,再乘3,3写在哪儿?(板书好再问)有没有不同的意见?现在有两种写法,你认为那一种更好一些呢?(如果只有一种,问:都认为写在这儿,为什么?)

在学生充分说的基础上,说明:把小数0.8先看成整数8计算,也就是把0.8的什么先不看?(根据回答遮住小数点)8就跟…3对齐了。接着计算,三八二十四。根据我们前面的探索,这里乘得的积应该是几位小数?因数中的小数是几位小数。

那么0.8×3=2.4,我们一起口答。

(三)解决问题2。

1、列式。

师:如果,冬天也买3千克西瓜要多少元?谁来列式?2.35×3也是小数乘整数,它表示什么?

2、尝试列竖式计算。

师:这道题比刚才这道题要难了,敢不敢尝试?好,在练习本上算一算。

学生计算,老师巡视。

3、展示。

师:算好了,谁先来说说你是怎么算的?

问:3写在哪儿?为什么?小数点写在哪儿?是不是等于7.05,我还可以用什么方法计算?(板书加法)得数是一样的。

我们来看这里因数中的小数是几位小数,积有几位小数?

好的,2.35×3=7.05,一起口答。

4、对比。

师:同学们,通过这两道题的计算,你发现了什么?(末位对齐或小数的位数问题)观察这两题的因数与积你发现了什么?能不能接着往下猜?也就是说因数里有…,积就有…。(板书:因数里有几位小数,积就有几位小数?)

(四)探索小数点的位置。

1、猜想。

师:两道题就能确定这是一条规律了?我们再来做几道题验证一下,好不好?出示4.76×12,你猜积有几位小数?你能不能也举一些像这样的乘法式子让其他同学猜猜积有几位小数?最后一次机会,谁来说个小数位数多些的?

2、验证。

师:下面拿出计算器,准备好,请听题。第一题…

算好的请举手。你说?57.12是几位小数,证明我们的判断是…正确的。第二题…。

师:请把计算器收起来。同学们经过刚才的计算和验证,证明了什么?(指板书)我们就能确定这是一条规律。

3、判断。

师:根据这条规律,请你来当小法官。

(1)下面的计算,积的小数点位置正确吗?0.12×4=4.8

师:为什么?怎么改?

(2)在爱心捐款活动中,五年级同学决定把收废品的钱捐给希望小学,共收集了废品32千克,每千克0.84元。

0.84×32=2688元

师:同学们,本来只有二十几元的钱,生活委员却算成了2688元,听到这你有什么感受?

(五)总结小数乘整数的计算方法。

师:同学们,学到现在小数乘整数你会算了吗?回顾一下我们刚才的计算过程,你认为小数乘整数应该怎样算?自己先想一想,再与同桌同学说说。

小结:计算小数乘整数时,一般先把小数看成整数,然后按照整数乘法的计算方法进行计算,最后看因数有几位,就从积的右边起数出几位点上小数点。

过渡:同学们,会算了,我们来练练身手好吗?

三、巩固延伸。

1、练一练的第1题。

请翻开书,第69页做练一练第一题。

最后两题如果感觉不够算,可以写在练习本上。

拿上一位同学的作业,讲评:

(1)第一小题,对吗?你是怎么算的?

(2)第二小题,对吗?(你有什么建议?或这个零为什么要画去?)小数乘法也一样要化简。

(3)第三小题,有意见吗?你有什么建议?

哦,把小数先看成整数,那么这个地方,还应不应该有小数点,而应该在…结果点上小数点。要不要改一改?

(4)(找对的同学)第四小题,现在我们来看这位同学做的对吗?对的请举手。

师:通过这几道题的计算,你觉得小数乘整数计算时有什么地方要提醒大家的?(数位末位对齐、小数点、末尾有零要化简、竖式的中间不用点小数点)

2、练一练的第2题。

师:提醒得很到位。出示14.8×23,现在不用计算,只要知道哪个算式的得数,你就能知道14.8×23的得数?共3页,当前第2页123

告诉你148×23=3404,能告诉我14.8×23的结果吗?你是怎么想的?

再来148×2.3,得数多少?0.148×23呢?

出示□×□=34.04,方框里能填哪些数?

师:你很聪明,同学们请看是一位小数,也是一位小数,一位小数乘一位小数积是不是两位小数呢?以后我们还会再研究小数乘小数的计算方法。

3、解决实际问题。

过渡:利用今天学的知识我们来解决一些实际问题。

(1)出示:2008年,就是北京奥运会了。为庆祝奥运会上海有位大学生很有创意,独自一人骑自行车从上海出发去北京,每天约行92.4千米,经过15天到达北京。而且还带着一份长102米,宽0.98米的“万人签名支持奥运”条幅,送给北京的奥组委。

(2)根据这些信息你能解决哪些数学问题?好,自己给自己提出一个问题,算一算。

(3)通过计算,你体会到了什么?

四、反思回顾。

师:同学们,今天我们学习小数乘整数,你有什么收获?

《小数乘小数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式