![乘法分配律教案[范例15篇]](https://img.jihtu.com/upload/6956.jpg)
乘法分配律教案[范例15篇]
作为一名人民教师,通常会被要求编写教案,教案有利于教学水平的提高,有助于教研活动的开展。教案应该怎么写才好呢?下面是小编收集整理的乘法分配律教案,仅供参考,欢迎大家阅读。
乘法分配律教案1设计说明
教材中本单元的一个鲜明特点是不仅给出一些数值计算的实例,让学生通过计算发现规律,而且结合学生熟悉的问题情境,帮助学生体会运算定律在现实生活中的应用。这样便于学生依据已有的知识经验,分析比较不同的解决问题的方法,从而引出运算定律。因此,对于乘法分配律的教学,本教学设计注重体现以下三点:
1.游戏激趣,设置悬念。
在游戏中学习,体现了玩中学,做中学的理念,让学生体会到玩中有乐,乐中有疑。上课伊始,通过游戏创设情境,设置悬念,把全班学生分成两组进行计算比赛,通过对比赛结果的质疑引发学生对新知的探究欲望。
2.观察、比较,举例验证猜想。
在学习新知的过程中,我把乘法分配律的知识放在具体的生活情境中,让学生通过运用多种计算方法去感知解决问题的多样化,对所列算式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证,在这样的学习过程中,让学生感受数学家发现规律的.过程,从而积累丰富的探究数学知识的经验。
3.多角度练习,强化认识和理解。
小学数学练习题在整个数学教学中所占的比重很大,数学基础知识的巩固和掌握,解题技能、技巧的形成,以及思维能力的培养等都离不开练习题。因此,在本节课的练习设计上,我力求有针对性、有梯度地设题,同时也注重知识的延伸。
课前准备
教师准备 多媒体课件
教学过程
⊙游戏激趣
1.比赛热身。
师:同学们,请大家准备好纸和笔,在学习新内容前,我们先进行一个小小的数学热身赛。
师:请看大屏幕,左边的两组同学计算大屏幕上第(1)小题,右边的两组同学计算大屏幕上第(2)小题,看哪边的同学计算得又对又快。
(1)9×37+9×63 (2)9×(37+63)
2.评出胜负。
师:做完的同学请举手,汇报计算过程。
师:通过同学们的汇报,可以看出右边的同学做得比较快,你们知道这是为什么吗?这两道题有什么联系吗?
预设
生:虽然这两道题的算式和运算顺序不同,但计算结果相同,可以用等号连接这两道算式,即9×37+9×63=9×(37+63)。
师:同学们说得非常好,尤其是××,我们就先将他的这个发现命名为××猜想。
设计意图:借助数学热身赛激发学生的学习兴趣,让学生感知简算方法,猜测其中可能存在的数学规律,从而激发学生探究的欲望,为学习新知做好了情感铺垫。
⊙引导探究,发现规律
1.课件出示例7。
一共有多少名同学参加了这次植树活动?
(1)需要知道哪些条件?请在情境图里找一找。(出示情境图)
(2)把相关信息组织起来编成一道实际问题,并口述出来。(我校学生参加植树活动,一共有25个小组,每组里4人负责挖坑、种树,2人负责抬水、浇树。一共有多少名同学参加了这次植树活动)
(3)小组讨论,尝试用不同的方法解决问题并板书。
引导各小组汇报解题方法,并说明这样解题的理由。
解法一 (4+2)×25
=6×25
=150(名)
(4+2是求每组一共有多少名同学,再乘25就求出了25个小组一共有多少名同学)
解法二 4×25+2×25
=100+50
=150(名)
(4×25是求25个小组一共有多少名同学负责挖坑、种树,2×25是求25个小组一共有多少名同学负责抬水、浇树,再把它们加起来就是求一共有多少名同学)
2.观察算式,探究发现。(见课堂活动卡)
(1)小组合作,讨论探究。
①两道算式有什么相同点?
②两道算式有什么不同点?
③两道算式有什么联系?
乘法分配律教案2教学目标:
1、借助画图的方式理解、掌握乘法分配律并会用字母表示。
2、能够运用乘法分配律进行简便运算。
3、利用几何直观,培养学生观察、归纳、概括等初步的逻辑思维能力。
4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索,自己得出结论的学习意识。
教学重、难点:
理解并掌握乘法分配律。难点是乘法分配律的推理及运用。
教学过程:
一、情境导入:
出示采摘园图片。这是老师去采摘园采摘草莓的图片。你们观察过采摘大棚的地面是什么形状?采摘棚原来宽20米,长60米,扩大规模后,长增加了30米。现在果园的面积有多大?
二、探究发现,归纳总结。
(一)借助图形,感知模型。
1、引导:想象一下,如果用一幅图来表示题目的意思,这幅图会是什么样的呢?
请把想象的图画出来。交流学生作品后,出示
60米 30米
20米 《乘法分配律》教学设计
原面积 增加的部分
2、你会独立解决吗?(学生尝试解决)说说你是怎么想的?
评价:刚才大家用自己喜欢的方法从不同的角度出色地解决了同一个问题。现在请观察一下:(60+30)× 20=1800,60× 20+30× 20=1800,你有什么发现?师相机板书等号。
(二)借助图形,抽象模型。
1、出示几何图形:用两种方法解决问题。
60米 ( )米
20米 《乘法分配律》教学设计
原面积 增加的部分
刚才已知长增加了30米,现在尝试自己决定长增加的数量,你还能写出一些类似上面这样的等式吗?
2、交流:你想增加几米?怎样算?结论是什么?
师相机板书。
引导:孩子们,现在黑板上有那么多算式,你是否能结合图2来说一说它们有什么共同的特点?先同桌互说。再集体交流。
3、出示图3,要求:先把自己猜测的数据填入下面的'面积模型中,然后对自己的猜测进行计算、验证、自主完成任务单项2。
( )米 ( )米
( )米《乘法分配律》教学设计
原面积 增加的部分
4、交流:你是怎么猜测和验证的?结论是什么?
教师小结:由此可以得到的结论是:两个数相加的和乘一个数,等于用这两个数分别乘这个数,再把和相加。字母表示为(a ……此处隐藏16473个字……三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮助验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4、归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5、个性化理解
(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(□+○)×☆=□×☆+○×☆
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎么样?
[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。
(三)激活联系、应用规律。
1、请你把相等的两个算式连线。
(8+13)×4 41×(3+27)
3×(21+6) 7×5 +8
41×3 +41×27 3×21 +3×6
7×(5+8) 8×4 +13×4
(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?
2、根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不同意见吗?
(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。
[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。
3、联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。
(四)课堂小结:
今天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3 = 50×3+60×3
(75+68)×5 = 75×5+68×5
(80+65)×6 = 80×6+65×6
……
(a+b)×c = a×c+b×c
乘法分配律教案15教材分析 :
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:
学生基础较差、有的学生学习习惯不好,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的`过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点:理解并掌握乘法分配律——发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、发现问题
1.出示情境图,让学生估计墙面上贴了多少块瓷砖。
2. 用不同方法验证结果。让学生用不同方法计算,并引导讨论为什么方法不同结果却一样,这其中是否蕴含着某些规律。
二、提出假设、举例验证、建立模型
1、根据上题的规律提出假设
2、验证提出的假设是否适合其它数据
观察上题算式的特点,小组内举一些数据来验证,可借助计算器,用一些较大的数据验证。
全班交流,并用字母表示分配律。
三、运用乘法分配律的简算。
1、试一试
让学生尝试用乘法分配律解决运算中的简算问题。然后进行交流,概括出简算的方法
(10+7)×6=____×6+_____×6
8×(125+9)=8×_____+8×_____
7×48+7×52=______×(_____+_______)
2、练一练:
进一步尝试用用乘法分配律解决运算中的简算问题。
板书设计:
乘法分配律
6×9+4×9=90 40×25+4×25=1100
(6+4)×9=90 (40+4)×25=1100
乘法分配律:(a+b)×c=a×c+b×c



