绝对值与相反数教案

时间:2026-01-03 08:00:06
绝对值与相反数教案

绝对值与相反数教案

作为一名教学工作者,总归要编写教案,借助教案可以让教学工作更科学化。那么问题来了,教案应该怎么写?下面是小编为大家收集的绝对值与相反数教案,希望能够帮助到大家。

绝对值与相反数教案1

【学习目标】

1、使学生能说出相反数的意义

2、使学生能求出已知数的相反数

3、使学生能根据相反数的意思进行化简

【学习过程】

【情景创设】

回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点a,点b即是小明到达的位置。

观察a,b两点位置及共到原点的距离,你有什么发现吗?

观察下列各对数,你有什么发现?

‐5与5,‐6、1与6、1,‐34 与+34

相反数的描述性定义:符号不同,绝对值相等的两个数,叫做相反数(只有符号不同)

规定0的相反数是0

想一想:你能举出互为相反数的例子吗?

【例题精讲】

例1

例2

试一试: 化简―[―(+3、2)]

想一想:

请同学们仔细观察这五个等式,它们的符号变化有什么规律?

把一个数的`多重符号化成单一符号时,若该数前面有奇数个“―”号,则化简的结果是负;若该数前面有偶数个“―”号,则化简的结果是正、

练一练:填空

(1)-2的相反数是 ,

3、75与 互为相反数,

相反数是其本身的数是 ;

(2)-(+7)= ,

-(-7)= ,

-[+(-7)]= ,

-[-(-7)]= ;

(3)判断下列语句,正确的是 、

① ―5 是相反数;

② ―5 与 +3 互为相反数;

③ ―5 是 5 的相反数;

④ ―5 和 5 互为相反数;

⑤ 0 的相反数还是 0 、

选择:

(1)下列说法正确的是 ( )

a、正数的绝对值是负数;

b、符号不同的两个数互为相反数;

c、π的相反数是 ―3、14;

d、任何一个有理数都有相反数、

(2)一个数的相反数是非正数,那么这

个数一定是 ( )

a、正数 b、负数 c、零或正数 d、零

画一画:

在数轴上画出表示下列各数以及它们的相反数的点:

动脑筋:

如果数轴上两点 a、b 所表示的数互为相反数,点 a 在原点左侧,且 a、b 两点距离为 8 ,你知道点 b 代表什么数吗?

【课后作业】

1、判断题

(1) 0没有相反数。 ( )

(2)任何一个有理数的相反数都与原来的符号相反。 ( )

(3)如果一个有理数的相反数是正数,则这个数是负数、 ( )

(4)只有0的相反数是它本身 ( )

(5) 互为相反数的两个数绝对值相等

2、填空题

(1) —(—2、8)= _________; —(+7)= _________;

(2) —3、4的相反数是 ________、

(3) —2、6是________的相反数、

(4)│—3、4│=________;│5、7│=________;

—│2、65│=_______;—│—12、56│=_______

(5)绝对值等于5的数是_________

(6)相反数等于本身的数是__________

3、化简:

(1) —(—1966)=______ (2) +│—1978│=______(3)+(—1983)=______

(4) —(+1997)=_______ (5) +│+XX│=______

4、选择题:

(1)在—3、+(—3)、—(—4)、—(+2)中,负数的个数有( )

a、1个 b、2个 c、3个

(2)在+(—2)与—2、—(+1)与+1、—(—4)与+(—4)、

—(+5)与+(—5)、—(—6)与+(+6)、+(+7)与+(—7)

这几对数中,互为相反数的有( )

a、6对 b、5对 c、4对 d、3对

5、在数轴上标出3、—2、5、2、0、 以及它们的相反数。

6、请在数轴上画出表示3、—2、—3、5及它们相反数的点,并分别用a、b、c、d、e、f来表示

(1)把这6个数按从小到大的顺序用

(2)点c与原点之间的距离是多少?点a与点c之间的距离是多少?

绝对值与相反数教案2

一、教学目标:

1、掌握绝对值的概念,有理数大小比较法则。

2、学会绝对值的计算,会比较两个或多个有理数的大小。

3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想。

二、教学难点:

两个负数大小的比较。

三、知识重点:

绝对值的概念。

四、教学过程:

(一)设置情境。

1、引入课题。

星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正:

(1)用有理数表示黄老师两次所行的路程。

(2)如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

2、学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关。

3、观察并思考:

画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离。

4、学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

例如,上面的问题中|20|=20|—10|=10显然|0|=0这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义。为引入绝对值概念做准 ……此处隐藏1315个字……原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

2、尝试回答

(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

(3)︱0︱= 。(幻灯片)

思考:你能从中发现什么规律?引导学生得出:(幻灯片)

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的.相反数;

零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;

当a是负数时,︱a︱=-a;

当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

显然,结合问题的实际意义不难得到:-4-202。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:P17例,P18练习。

5、师生小结归纳(幻灯片)

三、笔记与板书提纲:

1、 幻灯片

2、 师生板演练习P15/1

四、练习与拓展选题:

P19/4,5,9,10

绝对值与相反数教案5

【学习目标】

1.使学生能说出相反数的意义

2.使学生能求出已知数的相反数

3.使学生能根据相反数的意思进行化简

【学习过程】

【情景创设】

回忆上节课的情境,小明从学校出发沿东西大街走了0.5千米,在数轴上表示出他的位置。点A,点B即是小明到达的位置。

观察A,B两点位置及共到原点的距离,你有什么发现吗?

《数轴》专题练习

1.(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:

A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.

(1)将5个队按由低分到高分的顺序排序;

(2)把每个队的得分标在数轴上,并标上代表该队的字母;

(3)从数轴上看A队与B队相差多少分?C队与E队呢?

《2.4数轴》同步测试

1下列说法中错误的是(  )

A.一个正数的'绝对值一定是正数

B.任何数的绝对值都是正数

C.一个负数的绝对值一定是正数

D.任何数的绝对值都不是负数

22017·海安县期中绝对值大于2且不大于5的整数有________个.

3某检修小组乘坐一辆汽车沿公路检修供电线路,约定前进为正,后退为负,他们从出发到收工返回时,走过的路程记录如下(单位:km):+5,-3,+7,-1,-4,+8,-12.求他们从出发到收工返回时,总共行驶的路程.

绝对值与相反数教案6

教学目标:

1、知识与技能:

(1)借助数轴理解相反数的概念,会求一个数的相反数。

(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

2、过程与方法:

在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

重点、难点

1、重点:理解相反数的意义,会求一个数的相反数。

2、难点:对相反数意义的理解。

教学过程:

一、创设情景,导入新课

1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

二、合作交流,解读探究

1、(出示小黑板)

教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

学生活动:分小组讨论,与同伴交流。

教师活动:请几位同学说出他们讨论的结果,指出点B表示+2.6,点D表示-2.6,它们只有符号不同,到原点的距离都是2.6。

2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

0的相反数是0。

3、学生活动:

在数轴上,表示互为相反数的两个点有什么关系?

学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

4、练习填空:

3的相反数是;-6的'相反数是;-(-3)=;-(-0.8)=;

学生活动:在练习本上解答,并与同伴交流,师生共同订正。

归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

三、应用迁移,巩固提高

1、课本P10第1题。

2、填空:

(1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

3、如果一个数的相反数是它本身,则这个数是。

4、若α、β互为相反数,则α+β= 。

5、-(-4)是的相反数,-(-2)的相反数是。

6、化简下列各数的符号

-(-9)=; +(-3.5)= ;

-=;-{-[+(-7)]}= 。

7、若-x=10,则x的相反数在原点的侧。

8、若x的相反数是-3,则;若x的相反数是-5.7,则。

四、总结反思

本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

五、课后作业

课本P13习题1.2A组第3、4题。

《绝对值与相反数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式