
《混合运算》教学教案
在教学工作者开展教学活动前,就不得不需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么应当如何写教案呢?下面是小编收集整理的《混合运算》教学教案,欢迎大家分享。
《混合运算》教学教案1教材说明
学生在前几册教材中已经学习过了有关速度、时间、路程之间数量关系的应用题。但是以前学习的这种应用题,都是研究一个物体的运动情况,从这部分教材开始,将要研究两个物体(两人、两车、两船等)的运动情况。这里以相遇问题为主,研究两个物体在运动中的速度、时间和路程之间的数量关系。两个物体运动的情况是多种多样的,有方向问题,出发地点问题,还有时间问题。学生要全部掌握这些是较困难的。本册教材的重点是教学两个物体相向运动的应用题。其中又以“相遇求路程”和“相遇求时间”两种为主。关于两物体相遇,求其中一个物体的运动速度的应用题,放在后面,用列方程的方法解答。
学好两物体相向运动的相遇问题,关键是弄清每经过一个单位时间,两物体之间的距离变化。由于学生在这方面的生活经验较少,往往不易理解相向运动的变化特点。为此教材首先出现一个准备题,通过图示来说明什么叫做“相向而行”。接着通过列表分析了每经过1分、2分、3分后,两个人之间距离的变化,让学生理解什么是“相遇”。然后再通过例3、例4教学“相遇求路程”和“相遇求时间”的应用题。
在例3中,教材通过图示着重说明了小强和小丽两人走的路程的和就是他们两家之间的路程。但是解答方法可以不同。第一种解法是先求两人各自走多少米,再加起来。这种解法思路较清楚,学生容易理解。第二种解法稍难一些,但是有了准备题做基础,学生就能比较好理解为什么要先求每分钟两人所走的路程的和。这种解法不仅比第一种解法简便,而且是教学例4的基础。
在例4中,教学“相遇求时间”的应用题。这恰好是利用例3中的数量关系进行逆运算。教材没有再详细地进行分析,只是提出启发性问题,让学生想应该怎样解答。
在练习十四中,除了编排了相向运动的相遇问题以外,还有一些稍有变化的题目。例如:相背行驶、不同时出发、间接给出某一车的速度等,为的是扩展学生的经验,让学生更多地熟悉有关两个物体运动变化时的数量关系,同时也防止学生在解题时死套类型或公式。
教学建议
1.这部分内容可以用3课时进行教学。完成练习十四中的习题。
2.教学例3之前,可以先复习速度、时间和路程之间的数量关系。然后说明,以前我们都是研究一个物体运动的速度、时间和路程的'关系。现在我们要研究两个物体运动的速度、时间和路程的关系。接着,出示第54页上面的准备题,通过画图或者让两个学生演示,相对走一走,说明什么叫做“同时出发”和“相向而行”。再结合图示或学生的演示,看每分两人距离的变化,让学生在图下面的表中填写数目。学生填完表以后,教师可以组织学生分析表中各个数量之间的关系,弄清两人在相对行走的过程中,经过1分、2分、3分后,每个人走过的米数和两人之间的距离有什么关系。最后再弄清什么叫做“相遇”,相遇时,两个人走过的路程和两家之间的距离有什么关系。
3.通过例3教学相向运动求路程的应用题时,可以画出线段图来帮助学生弄清题意,使学生看到小强和小丽在相遇时两人走过的路程的和,就是他们两家之间的距离。然后,可以提问:“怎样才能求出两人走过的路程的和呢?”可以先让学生试着列式计算,然后组织讨论。使学生明确,先分别求出两人各自走过的路程,也就是各自从家到学校的路程,再加起来就是两家之间的路程。教学完第一种解法后,可以让学生联系准备题中分析过的数量关系想一想,在这题中由于两人同时出发,那么每经过1分钟两人之间的路程有什么变化,到相遇时怎样?求两家之间的路程还可以怎样算?引导学生列出第二种算式计算。做完后可以让学生说一说自己是怎样分析和解答的。在这之后,还可以让学生比较一下两种解法,想一想它们之间有什么联系。从数量关系上看,第一种解法是用两人各自的速度乘时间,得出两人各自走的路程,然后再加起来;第二种解法是根据两人同时出发后相遇,时间相同,可以先算出两人每分钟一共走多少米,也就是“速度和”,再乘时间。从数学知识上看,两种解法的算式之间的联系正好符合乘法分配律。然后,通过例3下面“做一做”中的习题和练习十四中第1~3题,使学生巩固所学的知识。
4.通过例4教学相向运动求相遇时间的应用题。教学时,可以先让学生自己解答复习题。复习前面刚学过的两人相遇求路程的应用题。然后再把条件和问题改成例4,并画图表示出条件和问题,然后引导学生想,已知两地相距270米,又知道两人各自的速度,能不能求出相遇的时间?并且联系例3的第二种解法,启发学生想,“每经过1分钟两人之间的路程有什么变化?”“到相遇时两人共走了多少米?”“那么经过多少分钟两人可以走完这270米,可以怎样计算?”让学生试着列式解答。然后找几个学生说一说自己是怎样分析解答的。在学生做完例4下面“做一做”中的习题以后,订正时也要找几个学生分析一下自己的解法。
《混合运算》教学教案2一、创设情境 ,导入新课。
你们到商店买过东西吗?
一般买东西的时候你会考虑哪几个问题?
(比如自己带了多少钱?东西的单价?准备购买的数量……)
出示挂图:
看挂图:说说看上面告诉我们哪几个信息?
(让学生看图一一说说几样东西的单价)
二、认识“综合算式”
1、提问题:谁能根据这些信息来提个问题呢?
(学生可能会提一步计算的问题。)
老师引导学生解答后,:问:谁能提需要两步计算才能解决的问题呢?
比如:买3本笔记本和一个书包,一共用去多少钱?
2、解决:
请大家解答这个问题,写在自备本上
交流:(1)3×5=15元,15+20=35元
(2)3×5+20=35元
(3)20+3×5=35元
讲评:(1)说说第一种算法每一步分别表示什么意思?
(2)说说第2个算式先算的是什么?再算的是什么?
(3)再说说第3个算式的计算顺序
3、综合算式:比较这3个算式,它们有什么不同?
指出:第1个算式是一个算式解决一个问题,分两步来完成的,我们把它叫做分步列式。而后面的做法是把上面的两个算式合并在一起写的,我们叫它综合算式。
综合算式在解答时,其实是有它的格式。比如:3×5+20 (边说边板书计算格式,注意说清楚:先算什么,没算的'移下来,2个“=”号。
要对齐……)这种等式叫递等式
最后别忘了单位名称和答
4、刚才我们用综合算式解决了一个问题,谁再能提一个可以用综合算式解决的问题 ……此处隐藏13931个字……各题的运算顺序,后在本子上练习
10.1+9.990.1 9.7283.2+15.20.2
2.计算下列各题,得数保留两位小数。
(1)7.053.8527.14 (2)0.630.570.36
(3)4.321.72.54 (4)4.670.2320.30
指出取积、商的近似值的方法及约等号“”的使用。
二、新授。
1.揭示课题:“有括号的四则混合运算”。
2.出示例3:计算:3.61.2+0.55
问:运算顺序是什么?
如果要先算1.2+0.5该怎么办?(添上括号),这时运算顺序怎样?
3.6(1.2+0.5)5
学生尝试练习,指名板演,当学生发现3.61.7除不尽时提出问题老师该怎么办?教师回答在计算过程中除得的商超过两位小数的,一般只保留两位小数,再进行计算。
学生练习完后,教师讲评,重点解决:
=3.61.75
2.125 (这里为什么用约等号?)
=10.6 (这里为什么又用等号?)
小结:教师指出黑板上的题,“3.6(1.2+0.5)5我们用了什么符号?”(用了小括号)“在这里小括号有什么作用?”(改变运算顺序)“算的过程中如果遇到除不尽或商的小数位数较多时,我们可以怎样做?”(一般可以只除到第三位小数,然后按“四舍五入法”保留两位小数)。
有时需要改变算式中的运算顺序,就要用到括号,但有时只有小括号还不够用,就要用到中括号‘’
教师板书:中括号,并说明中括号的写法。例如在例3中要先算(1.2+0.5)5,就要加中括号。这样就可得到下面的算式:
3.6
计算时,要先算小括号里面的,再算中括号里面的。
讲解: 3.6
=3.6(1.75)
=3.68.5 (这里为什么用等号?)
0.42 (这里为什么用约等号?)
指导学生看书。
三、巩固练习。
1、判断下面各题是否正确,若有错改正过来。
4.06(13.54+14.46)-0.14 (15.38-1.74)37
=4.0628-0.41 =13.4637
0.145-0.41 4.557
=0.005 0.65
2、课本第38页做一做。(先划出运算顺序,后计算)
3、堂上练习。
练习十第2题前两题
练习十第3、4题。
《混合运算》教学教案15教学内容:教材第49页中的例3及相关内容。
教学目标:
1.让学生经历含有小括号的混合运算的运算顺序的探索过程,明白“算式里有括号的,要先算括号里面的”的道理。
2.理解并掌握含有括号的混合运算的运算顺序,并能正确运用运算顺序进行计算。
3.在解决问题的过程中,让学生充分体会“小括号”在混合运算中的作用。
4.培养学生独立思考、独立解决问题和积极参与学习活动的能力。
目标解析: 在算式的比较中唤起学生已有的知识经验,让学生经历含有括号的混合运算的运算顺序的探索过程,并在计算、比较中体会“小括号”在混合运算中的作用。
教学重点:掌握含有括号的混合运算的运算顺序。
教学难点:体会小括号的作用,会列综合算式来解决问题。
教学准备:课件等。
教学过程:
一 、复习旧知,导入新课。
(一)计算(课件出示出示下面各题) 75-36+24 25-20÷5 6×8-5
1.指生说说每题先算什么,再算什么。
2.学生独立计算,并指生板演,然后全班交流,明确每题的运算顺序。
(二)说出各题的运算顺序并计算(课件出示下面各题) (1)10-5+3= (2)7+(7-6)= 10-(5+3)= 7+7-6=
1.学生独立计算,把先算的一步画上横线。
2.比较算式,全班交流。
(1)每组中上、下两题有什么相同点和不同点?
(2)为什么数字相同,运算符号相同,可运算顺序不一样呢? 3.引导学生归纳,初步明白运算顺序:一个算式里有括号的,要先算括号里面的。
(三)导入新课,并板书课题 。
二、自主探究,学习新知。
(一)尝试练习,引出规定。
1.脱式计算。(课件出示例3) 7×(7-5) (77-42)÷7
2.学生独立完成,同时指生板演,教师巡视进行个别指导。
3.这两道题有什么相同之处?(都含有小括号)
4.引导学生归纳:算式里有括号的',要先算括号里面的。
(二)变式练习,形成对比 。
1.脱式计算。(课件出示下面题目) 7×7-5 77-42÷7
2.指生说说各题的运算顺序,然后独立完成,同时指生板演,教师巡视进行个别指导。
3.比较算式。 7×(7-5) (77-42)÷7 7×7-5 77-42÷7 (1)上、下两个算式有什么不同? (2)在进行脱式计算时要注意什么? (3)小括号在这里起到什么作用?(改变运算顺序)
三、巩固深化,综合应用 。
(一)计算(课件出示教材第49页“做一做”第1题)
1、76-(12+25)(12-5)×3 48÷(8-2) 34-(28-13) 6×(7+2) (88-56)÷8 1.这6道题有什么相同点?
2.有括号的算式,按怎样的运算顺序进行计算?
3.学生独立完成,指生板演,教师巡视指导,最后全班交流。
(二)说出各题的运算顺序并计算(课件出示教材第49页“做一做”第2题)
4+5×7 (72-18)÷9 24÷4+2 (4+5)×7 72-18÷9 24÷(4+2)
1.每组中上、下两题有什么相同点和不同点? 2.学生独立完成,体会“小括号”在混合运算中的作用。
(三)先填空,再列综合算式。(出示教材第49页“做一做”第3题)
1.学生独立完成,指生板书综合算式,教师巡视指导。
2.全班交流:什么时候需要加“小括号”?
(四)看图列式计算(出示教材第52页第13题)
小明有35元钱,买一个魔方用了3元,剩下多少钱?如果用剩下的钱买8元一个的笔袋,可以买几个?
1.学生读题,理解题意。
2.学生独立完成,指生板演,教师巡视指导。
3.全班交流,重点说明:要求可以买几个笔袋,必须要求出剩下的钱。
4.拓展提高:有能力的学生也可引导他们直接求第二问。
四、课堂小结。
今天这节课我们学习了什么知识?与前面学习的混合运算有什么不同?计算时要注意什么?



