
三角形内角和教案
作为一位不辞辛劳的人民教师,有必要进行细致的教案准备工作,教案是教学活动的依据,有着重要的地位。教案应该怎么写才好呢?下面是小编精心整理的三角形内角和教案,仅供参考,大家一起来看看吧。
三角形内角和教案1教学目标
1.使学生经历自主探索三角形的内角和的过程,知道三角形的内角和是180°,能运用这一规律解决一些简单的问题。
2.使学生在观察、操作、分析、猜想、验证、合作、交流等具体活动中,提高动手操作能力和数学思考能力。
3.使学生在参与数学学习活动的过程中,获得成功的体验,感受探索数学规律的乐趣,产生喜欢数学的积极情感,培养积极与他人合作的意识。
课前准备
多媒体课件,任意三角形,剪刀,纸,三角板,量角器等。
教学过程
一、创设情境,导入新课
师:我们已经学习了三角形的分类,你知道三角形按角分可以分为哪几类吗?
生:三角形按角分可以分为钝角三角形、直角三角形、锐角三角形。
师:(出示一副三角尺)这是一副三角尺,它们都是什么形状?每块三角尺的三个角分别是多少度?
生:它们都是直角三角形,(拿起等腰的三角尺)这块三角尺三个角的度数分别是45°、45°和90°;另一块三角尺的三个角分别是30°、60°、90°。
教师指三角尺的角:这三个角都叫做三角形的内角。(板书:内角)一个三角形有几个内角?
生:一个三角形有三个内角。
师:这两个三角形三个内角的和分别是多少度?
生:都是180°。
师:一个三角形中三个内角的和称为三角形的内角和。今天我们就来研究三角形的内角和。(板书课题)
二、提出问题,猜想验证
1.猜想。
师:请同学拿出两块同样的三角尺,把这两块同样的三角尺拼成一个大的三角形,看一看拼成的三角形的内角和是多少度?
学生活动后,反馈:你拼成的三角形是什么样子的?它的内角和是多少度?
生1:我拼成的三角形每个内角都是60°,它的内角和是180°。
生2:我拼成的三角形,三个内角分别是30°、30°、120°,它的内角和也是180°。
生3:我拼成的三角形,三个内角分别是45°、45°、90°,它的内角和也是180°。
师:从这一现象中,你能猜想一下,三角形的内角和可能存在的规律吗?
生1:我猜想三角形的内角和是180°。
生2:我猜想钝角三角形的内角和比180°大。
生3:不对。我拼的这个三角形(用两块三角尺拼成一个三个内角是30°、30°、120°的三角形)就是一个钝角三角形,但它的内角和也是180°。
师:还有不同的猜想吗?
师:研究数学问题就要像这样,既能大胆地猜想,又敢于对结论提出质疑。有人对“三角形的内角和等于180°”这一猜想提出质疑吗?你能说清楚三角形的内角和等于180°的理由吗?(没有人举手)是的,由猜想得出的结论往往是不可靠的,需要我们进一步去验证。
2.验证。
师:怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。
学生分小组活动,教师参与学生的活动,并给予必要的指导。
师:哪个小组先来汇报,你们是怎样验证的?
小组1:我们小组每个人画了一个三角形,用量角器量,量出各个三角形的内角度数,再加一加,并列出了一张表格,(在实物投影仪上展示下面的表格)请大家来看一看。通过计算,我们认为三角形内角和是180°这一结论是正确的。
小组2:我们小组把三角形的三个内角拼在一起,(边说边演示)我们发现三角形的三个内角正好拼成了一个平角,所以我们也认为三角形内角和是180°这一结论是对的。
小组3:我们小组采用了折一折的方法。我们将正方形纸沿对角线对折,这样,就折成了两个大小一样的三角形。因为正方形的四个直角的和是360°,所以三角形的内角和就是它的一半,是180°。
小组4:我们小组采用的是拼一拼的方法。我们将两个完全一样的三角形拼成了一个长方形,长方形的内角和360°,所以三角形的内角和就是它的一半,是180°。
3.归纳。
师:通过刚才的活动,我们得出了什么结论?
生:三角形的内角和等于180°。
师:刚才,我们是怎样得出“三角形内角和等于180°”这个结论的?
生:我们是用先猜想再验证的方法得出结论的。
师:是的,“猜想—验证”是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。
4.教学“试一试”。
师:知道了三角形的内角和等于180°,就可以运用它去解决一些问题。我们来“试一试”。(出示“试一试”的题目)你能根据∠1和∠2的度数,算出∠3的度数吗?自己先算一算,再用量角器量一量,看与算出的结果是否相同。
学生汇报结果。
三、灵活运用,巩固练习
1.出示“想想做做”第1题。
师:你能算出下面每个三角形中未知角的度数吗?独立完成。
学生活动后,集体反馈。
2.出示下图。
师:用今天学习的结论还能解决生活中的.一些问题呢。这里的三张纸片都被撕去了一个角,你能猜一猜,它们原来是什么三角形吗?
生1:第一个三角形是锐角三角形,因为已知的两个角的和大于90°了。
生2:第二个三角形是直角三角形,因为两个已知的角的和等于90°。
生3:第三个三角形是钝角三角形,因为已知的两个角的和只有40°,被撕去的那个角一定是钝角。
师:从这几道题中,还知道了什么?
生:在一个三角形中最多有一个直角或一个钝角。
师:大家的判断真是有理有据,算一算,每个三角形中被去撕去的角是多少度。
学生计算后校对。
3.出示“想想做做”第4题。
师:你能算出下面三角形中∠3的度数吗?
学生练习后,集体反馈。
4.出示“想想做做”第5题。
师:在一个直角三角形中,已知一个锐角的度数,你能算出另一个锐角的度数吗?先看第一个直角三角形,一个锐角是35°,另一个锐角是多少度?你是怎样算的?
生1:因为直角三角形中有一个直角,所以,用180° - 90° - 35° = 55°,∠2等于55°。
生2:因为直角三角形中有一个角是90°,所以,两个锐角的和一 ……此处隐藏26951个字……课堂教学是为学生的学习和成长服务的,教师要勇于放手,给学生更大的思维空间。比如,在验证三角形的内角和是180的时候,学生一直没有想到要验证所有的三角形内角和是 180,只要验证按角分的三类就行了。教学时,我一直想提醒大家,但是总是不甘心,希望学生能自己去体悟,最后学生悟的不错。我想这样的学习对学生来说是有价值的。
3、要重视学生的反思和交流。
教师教给学生的,学生不一定能听得懂。但是让学生及时地对自己的学习过程进行反思,并和同伴交流自己的思路,这个过程对学生来说是个再思考的过程,教师能从中感受到学生学习的状态和感受。
在整理案例的时候,我试图从两方面去体现这一点。一方面是让学生不停地提出问题的过程,其实就是在不断深入学习的过程中,学生反思自己的思考过程,又提出新的问题;另一方面是学生之间的交流,在对话中体现出学生自己的思路和经验,这一点体现得还不够,我的笔不能把学生的交流充分表达出来,不能不说是一种遗憾。
本案例很好地展现了教师在课堂中是如何处理课堂的预设和生成的。这是本案例的最大一个亮点。
课堂上经常会出现一些教师意料之外的事情。比如说,本案例中,在学生对书上的结论三角形内角和是180提出质疑的时候,教师并没有按照原先的课堂预设,而是及时对课堂进行重组,让学生就此问题展开讨论,教师适时进行引导,帮助学生获得最后的结论。当然,这是由教师自身数学素养较深所决定的。其实,课堂教学中生成的一些火花源若能被教师捕捉到,将是进行教学的最好契机。这些都是学生思维火花的闪现,教师应及时地予以关注。
三角形内角和教案15三角形的有关知识是“空间与图形”中最为核心、最为重要的内容,它不仅是最基本的直线型平面图形,而且几乎是研究所有其它图形的工具和基础。而三角形内角和定理又是三角形中最为基础的知识,也是学生最为熟悉且能与小学、中学知识相关联的知识,看似简单,但如果处理不好,会导致学生有厌烦心理,为此,本节课的设计力图实现以下特点:
(1)通过折纸与剪纸等操作让学生获得直接经验,然后从学生的直接经验出发,逐步转到符号化处理,最后达到推理论证的要求。
(2)充分展示学生的个性,体现“学生是学习的主人”这一主题。
(3)添加辅助线是教学中的一个难点,如何添加辅助线则应允许学生展开思考并争论,展示学生的思维
过程,然后在老师的引导下达成共识。
1、三角形的内角和定理是从“数量关系”来揭示三角形内角之间的关系的,这个定理是任意三角形的一个重要性质,它是学习以后知识的基础,并且是计算角的度数的方法之一。在解决四边形和多边形的内角和时都将转化为三角形的内角和来解决。其中辅助线的作法、把新知识转化为旧知识、用代数方法解决几何问题,为以后的学习打下良好的基础,三角形内角和定理在理论和实践中有广泛的应用。
2、三角形内角和定理的内容,学生在小学已经熟悉,但在小学是通过实验得出的,要向学生说明证明的必要性,同时说明今后在几何里,常常用这种方法得到新知识,而定理的证明需要添辅助线,让学生明白添辅助线是解决数学问题(尤其是几何问题)的重要思想方法,它同代数中设末知数是同一思想。
3、学生在小学里已知三角形的内角和是180°,前面又学习了三角形的有关概念,平角定义和平行线的性质,而且也渗透了三角形的内角和是180°的证明,它的证明借助了平角定义,平行线的性质。用辅助线将三角形的三个内角巧妙地转化为一个平角或两平行线间的同旁内角,为定理的证明提供了必备条件。尽管前面学生接触过推理论证的知识,但并末真正去论证过,特别是在论证的格式上,没有经过很好的锻炼。因此定理的证明应是本节引导和探索的重点。辅助线的作法是学生在几何证明过程中第一次接触,只要教师设置恰当的问题情境,学生再由实验操作、观察、抽象出几何图形,用自主探索的方式是可发完成的,并且这样的过程可以更好地发展他们的创造能力和实验能力。
在小学已学过三角形的内角的有关知识,知道三角形的内角和为1800,但是为什么是1800并没有进行研究,因此本节是在学生前几学段学过三角形、线段、角等,初步了解了一些简单几何体和平面图形及特征会进行简单说理后,对“三角形的内角和定理”进行证明及简单应用。在证明过程中,通过一题多解,初步体会思维的多向性,引导学生的个性化发展,通过本节学习可以进一步丰富对图形的认识和感受。
七年级学生年龄较小,思维正处在具体形象思维向抽象逻辑思维转变的阶段,也是由代数运算向几何推理过渡的较好时期,通过前面的学习,学生已具备一些分析问题、解决问题的能力,这样可以让学生和谐地融入到探究性学习的氛围中。刚开始上课,我让学生回顾了平角的概念,平行线的性质,为证明内角和垫定基础。然后通过几何画板演示一组在小学已经学过的把三角形的三个角拼成一个平角的.方法,通过设问:从刚才拼角的过程中,你能根据我们在前面所学的知识说出证明:“三角形内角和等于180°”这个结论的正确方法吗?通过让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,一题多解的创新精神,让学生体会数学辅助线的桥梁作用,在潜移默化中渗透了初中阶段一个重要数学思想―――转化思想,为学好初中数学打下坚实的基础。
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。例如,我设置的一层练习,基本上都是给出或者间接给出一个三角形的两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力。这些练习设计目的明确,针对性强,使学生对定理得到了巩固。
通过二层练习,巩固三角形内角和知识,培养学生思维的广阔性,通过讨论一个三角形中最多有几个直角、钝角,至少有几个锐角,为学生提供充分从事数学活动的时间、空间,让学生在自主探索、合作交流的氛围中,有机会分享同学的想法,培养了学生之间良好的人际关系,拓展了三角形内角和是180°的知识外延。
三层练习难度上与一、二层练习有了大幅度的提高,为实现分层教学,满足成绩较好的同学的需求,有事可作,为高效课堂提供了平台。
最后,在堂小结方面,采用用先让学生归纳补充,然后教师再补充的方式进行:⑴这节课我们学了什么知识?⑵你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。
总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。



