
高中物理教案
作为一名为他人授业解惑的教育工作者,常常要写一份优秀的教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么优秀的教案是什么样的呢?以下是小编帮大家整理的高中物理教案,仅供参考,希望能够帮助到大家。
高中物理教案1本节教材分析
这节课通过对一些天体运动的实例分析,使学生了解:通常物体之间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体的质量很大,万有引力将起决定性作用,对天文学的发展起了很大的推动作用,其中一个重要的应用就是计算天体的质量.
在讲课时,应用万有引力定律有两条思路要交待清楚.
1.把天体(或卫星)的运动看成是匀速圆周运动,即F引=F向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及半径等问题.
2.在地面附近把万有引力看成物体的重力,即F引=mg.主要用于计算涉及重力加速度的问题.
一、教学目标
1.通过对行星绕恒星的运动及卫星绕行星的运动的研究,使学生初步掌握研究此类问题的基本方法:万有引力作为物体做圆周运动的向心力。
2.使学生对人造地球卫星的发射、运行等状况有初步了解,使多数学生在头脑中建立起较正确的图景。
二、重点、难点分析
1.天体运动的向心力是由万有引力提供的,这一思路是本节课的重点。
2.第一宇宙速度是卫星发射的最小速度,是卫星运行的最大速度,它们的统一是本节课的难点。
三、教具
自制同步卫星模型。
四、教学过程
(一)引入新课
1.复习提问:
(1)物体做圆周运动的向心力公式是什么?分别写出向心力与线速
(2)万有引力定律的内容是什么?如何用公式表示?(对学生的回答予以纠正或肯定。)
(3)万有引力和重力的关系是什么?重力加速度的决定式是什么?(学生回答:地球表面物体受到的重力是物体受到地球万有引力的一个分力,但这个分力的大小基本等于物体受到地球的万有引力。如不全面,教师予以补充。)
2.引课提问:根据前面我们所学习的知识,我们知道了所有物体之间都存在着相互作用的万有引力,而且这种万有引力在天体这类质量很大的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体拉到一起呢?(可由学生讨论,教师归纳总结。)
因为天体都是运动的,比如恒星附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力,将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做圆周运动的向心力由恒星对它的万有引力提供。(教师边讲解,边画板图。)
可见万有引力与天体的运动密切联系,我们这节课就要研究万有引力定律在天文学上的应用。
板书:万有引力定律在天文学上的应用人造卫星
(二)教学过程
1.研究天体运动的基本方法
刚才我们分析了行星的运动,发现行星绕恒星做圆周运动,此时,恒星对行星的万有引力是行星做圆周运动的向心力。其实,所有行星绕恒星或卫星绕行星的运动都可以基本上看成是匀速圆周运动。这时运动的行星或卫星的受力情况也非常简单:它不可能受到弹力或摩擦力,所受到的力只有一种——万有引力。万有引力作为其做圆周运动的向心力。
板书:F万=F向
下面我们根据这一基本方法,研究几个天文学的问题。
(1)天体质量的计算
如果我们知道了一个卫星绕行星运动的周期,知道了卫星运动的轨道半径,能否求出行星的质量呢?根据研究天体运动的基本方法:万有引力做向心力,F万=F向
(指副板书)此时知道卫星的圆周运动周期,其向心力公式用哪个好呢?
等式两边都有m,可以约去,说明与卫星质量无关。我们就可以得
(2)卫星运行速度的比较
下面我们再来看一个问题:某行星有两颗卫星,这两颗卫星的质量和轨道半径都不相同,哪颗卫星运动的速度快呢?我们仍然利用研究天体运动的基本方法:以万有引力做向心力
F万=F向
设行星质量为M,某颗卫星运动的轨道半径为r,此卫星质量为m,它受到行星对它的万有引力为
(指副板书)于是我们得到
等式两边都有m,可以约去,说明与卫星质量无关。于是我们得到
从公式可以看出,卫星的运行速度与其本身质量无关,与其轨道半径的平方根成反比。轨道半径越大,运行速度越小;轨道半径越小,运行速度越大。换句话说,离行星越近的卫星运动速度越大。这是一个非常有用的`结论,希望同学能够给予重视。
(3)海王星、冥王星的发现
刚才我们研究的问题只是实际问题的一种近似,实际问题要复杂一些。比如,行星绕太阳的运动轨道并不是正圆,而是椭圆;每颗行星受到的引力也不仅由太阳提供,除太阳的引力最大外,还要受到其他行星的引力。这就需要更复杂一些的运算,而这种运算,导致了海王星、冥王星的发现。
200年前,人们认识的太阳系有7大行星:水星、金星、地球、火星、土星、木星和天王星,后来,人们发现最外面的行星——天王星的运行轨道与用万有引力定律计算出的有较大的偏差。于是,有人推测,在天王星的轨道外侧可能还有一颗行星,它对天王星的引力使天王星的轨道发生偏离。而且人们计算出这颗行星的可能轨道,并且在计算出的位置终于观测到了这颗新的行星,将它命名为海王星。再后,又发现海王星的轨道也与计算值有偏差,人们进一步推测,海王星轨道外侧还有一颗行星,于是用同样的方法发现了冥王星。可见万有引力定律在天文学中的应用价值。
2.人造地球卫星
下面我们再来研究一下人造地球卫星的发射及运行情况。
(1)卫星的发射与运行
最早研究人造卫星问题的是牛顿,他设想了这样一个问题:在地面某一高处平抛一个物体,物体将走一条抛物线落回地面。物体初速度越大,飞行距离越远。考虑到地球是圆形的,应该是这样的图景:(板图)
当抛出物体沿曲线轨道下落时,地面也沿球面向下弯曲,物体所受重力的方向也改变了。当物体初速度足够大时,物体总要落向地面,总也落不到地面,就成为地球的卫星了。
从刚才的分析我们知道,要想使物体成为地球的卫星,物体需要一个最小的发射速度,物体以这个速度发射时,能够刚好贴着地面绕地球飞行,此时其重力提供了向心力。
其中,g为地球表面的重力加速度,约9.8m/s2。R为地球的半径,约为6.4×106m。代入数据我们可以算出速度为7.9×103m/s,也就是7.9km/s。这个速度称为第一宇宙速度。
板书:第一宇宙速度v=7 ……此处隐藏20476个字……反射
三.波的折射
1.波的折射:波从一种介质进入另一种介质时,波的 传播方向发 生了改变的现象叫做波的折射.
2.折射规律:
(1).折射角(r):折射波的波线与两介质界面法线的夹角r叫做折射角.
2.折射定律:入射线、法线、折射线在同一平面内,入射线 与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比:
当入射速度大于折射速度时,折射角折向法线.
当入射速度小于折射速度时,折射角折离法线.
当垂直界面入射时,传播方向不改变,属折射中的特例.
在波的折射中,波的频率不改变,波 速和波长都发生改变.
波发生折射的原因:是波在不同介质中的速度不同.
由惠更斯原理,A、B为同一波面上的两点,A、B点会发射子波,经⊿t后, B点发射的子波到达界面处D点, A点的到达C点,
高中物理教案14一、教学目标
1.物理知识方面:
(1)理解匀速圆周运动是变速运动;
(2)掌握匀速圆周运动的线速度、角速度、周期的物理意义及它们间的数量关系;
(3)初步掌握向心力概念及计算公式。
2.通过匀速圆周运动、向心力概念的建立过程,培养学生观察能力、抽象概括和归纳推理能力。
3.渗透科学方法的教育。
二、重点、难点分析
向心力概念的建立及计算公式的得出是教学重点,也是难点。通过生活实例及实验加强感知,突破难点。
三、教具
1.转台、小伞;
2.细绳一端系一个小球(学生两人一组);
3.向心力演示器。
四、主要教学过程
(一)引入新课
演示:将一粉笔头分别沿竖直向下、水平方向、斜向上抛出,观察运动轨迹。
复习提问:粉笔头做直线运动、曲线运动的条件是什么?
启发学生回答:速度方向与力的方向在同一条直线上,物体做直线运动;不在同一直线上,做曲线运动。
进一步提问:在曲线运动中,有一种特殊的运动形式,物体运动的轨迹是一个圆周或一段圆弧(用单摆演示),称为圆周运动。请同学们列举实例。
(学生举例教师补充)
电扇、风车等转动时,上面各个点运动的轨迹是圆大到宇宙天体如月球绕地球的运动,小到微观世界电子绕原子核的运动,都可看做圆周运动,它是一种常见的运动形式。
提出问题:你在跑400米过弯道时身体为何要向弯道内侧微微倾斜?铁路和高速公路的转弯处以及赛车场的环形车道,为什么路面总是外侧高内侧低?可见,圆周运动知识在实际中是很有用的`。
引入:物理中,研究问题的基本方法是从最简单的情况开始。
板书:匀速圆周运动
(二)教学过程设计
思考:什么样的圆周运动最简单?
引导学生回答:物体运动快慢不变。
板书:1.匀速圆周运动
物体在相等的时间里通过的圆弧长相等,如机械钟表针尖的运动。
思考:匀速周圆运动的一个显著特点是具有周期性。用什么物理量可以描述匀速圆周运动的快慢?
(学生自由发言)
板书:2.描述匀速圆周运动快慢的物理量恒量。
当t很短,s很短,即为某一时刻的瞬时速度。线速度其实就是物体做圆周运动的瞬时速度。当物体做匀速圆周运动时,各个时刻线速度大小相同,而方向时刻在改变。那么,线速度方向有何特点呢?
演示:水淋在小伞上,同时摇动转台。观察:水滴沿切线方向飞出。
思考:说明什么?
师生分析:飞出的水滴在离开伞的瞬间,由于惯性要保持原来的速度方向,因而表明了切线方向即为此时刻线速度的方向。
板书:方向:沿着圆周各点的切线方向。如图3。单位:rad/s。
(3)周期:质点沿圆周运动一周所用的时间。如:地球公转周期约365天,钟表秒针周期60s等,周期长,表示运动慢。(角速度、周期可由学生自己说出并看书完成)
板书:(师生共同完成)
思考:物体做匀速圆周运动时,v、ω、T是否改变?(ω、T不变,v大小不变、方向变。)讲述:匀速周周运动是匀速率圆周运动的简称,它是一种变速运动。
提出问题:匀速圆周运动是一种曲线运动,由物体做曲线运动的条件可知,物体必定受到一个与它的速度方向不在同一条直线上的合外力作用,这个合外力的方向有何特点呢?
学生小实验(两人一组):
线的一端系一小球,使小球在水平面内做匀速圆周运动。小球质量很小(可用橡皮塞等替代),甩动时线速度尽量大,小球重力与拉力相比可忽略,以保证拉线近似在水平方向。
观察并思考:
①小球受力?
②线的拉力方向有何特点?
③一旦线断或松手,结果如何?
(提问学生后板书并图示)
概括:要使物体做匀速圆周运动,必须使物体受到与速度方向垂直而指向圆心的力作用,故名向心力。
板书:3.向心力:物体做匀速圆周运动所需要的力。
提出问题:向心力的大小跟什么因素有关?
高中物理教案15【学习目标】
1、能熟练说出平抛运动的概念、性质、物体做平抛运动的条件
2、理解平抛运动可以分解为水平方向的匀速直线运动和竖直方向自由落体运动
3、用分解的思想处理平抛运动问题,探究平抛运动的基本规律。
【重点难点】
重点:解决平抛运动问题的基本思路
难点:用分解的思想理解平抛运动
预习案
【使用说明及学法指导】
1、通读教材,熟记本节基本概念、规律,然后完成问题导学中问题和预习自测。2、问题导学中 “处理平抛运动问题的基本思路”是本节内容的核心和基础,是解决平抛运动问题的前提和关键,应重点理解和熟练把握。3、如有不能解决的`问题,可再次查阅教材或其他参考书。4、记下预习中不能解决的问题,待课堂上与老师同学共同探究。5、限时15分钟。
【问题导学】
1、什么是平抛运动?
2、物体做平抛运动的条件是什么?
3、什么是匀变速运动?平抛运动是匀变速运动吗?
4、处理平抛运动问题的基本思路:平抛运动可分解为水平方向的
和竖直方向的 。物体从O点开始平抛,t时间后到达P点。在图中画出t时间内位移S、t时刻的速度v如图。把速度、位移沿x、y方向分解如上图,则
水平方向分速度vx= ,水平方向分位移x = 。
竖直方向分速度vy= , 竖直方向分位移y = 。
合速度公式V = ,其方向tanα = (α为v与水平方向夹角);
合位移公式S = ,其方向tanβ = (α为v与水平方向夹角)。



