
《中位数》教案
作为一名无私奉献的老师,就有可能用到教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。快来参考教案是怎么写的吧!以下是小编收集整理的《中位数》教案,希望能够帮助到大家。
《中位数》教案1第一步;理解体验:
1、复习平均数、中位数和众数定义
2、引入课本P146R的例子
思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。
由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。
本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。
第二步:总结提升:
平均数、众数和中位数这三个数据代表的异同:
平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量
平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的`变动都会相应引起平均数的变动.
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
实际问题中求得的平均数,众数,中位数应带上单位.
第三步:随堂练习:
1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分5060708090100110120
人数2361415541
分别求出这些学生成绩的众数、中位数和平均数.
2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。
(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。
答案:1.众数90中位数85平均数84.6
2.(1)15、15、15、众数(2).15、5.5、6、中位数
第四步:课后练习:
1、某公司的33名职工的月工资(以元为单位)如下:
职员董事长副董事长董事总经理经理管理员职员
人数11215320
工资5500500035003000250020001500
(1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示
《中位数》教案2教学内容
教材第105页例4第106页例5及练习二十三
教学目标
知识与技能
1、通过教学,使学生理解中位数在统计学的意义,学会求中位数的方法。
2、了解中位数与平均数的联系与区别,会根据数据的具体情况合理选择统计量。
过程与方法
经历中位数的认识计算过程,体验合作探讨,理解认识的学习方法,培养学生全面多角度分析问题的意识和初步的统计观念。
情感态度价值观
在学习活动中,感受数学知识在现实生活中广泛应用,激发学习兴趣,增强学生在生活中的数学意识,培养学生热爱体育运动的良好情感,
重点难点
重点
理解中位数的意义,掌握中位数的计算方法。
突破方法:
小组合作探究,在理解的基础上掌握中位数的方法。
难点
掌握求偶数个数据的中位数的方法。
突破方法
通过尝试理解,讨论交流体验来突破
教法与学法
教法创设情境质疑引导引导与讲解相结合
学法小组合作探究自主实践体验
教学准备
投影仪
教学过程
一、创设情境,生成问题
复习准备
1、教师投影出示
王丽同学1分钟跳绳比赛成绩如下表
次数第一次第二次第三次第四次
成绩124108136132
她这四次测试的平均成绩是多少?
看题理解题意,学生独立解答汇报
同学们在前面的学习中我们学习求平均数的方法,并且用平均数代表一组数据的一般水平,但有些时候平均数并不能代表一组数据的一般水平,今天我们就来认识一位新朋友——中位数
体育课上同学们掷沙包的成绩是多少呢?学生汇报,同学们可真棒!咱们去看看五1班同学正在进行掷沙包比赛,他们的成绩如何呢?
二、探索交流,解决问题
1、投影出示教材第105页例4情景图
设计意图(从生活中的实际问题入手,激发学生的学习兴趣,学生兴趣盎然,跃跃欲试)
姓名李明陈东刘云马钢王明张炎赵丽
成绩36.834.725.824.724.624.123.2
从他们的成绩表中你得到了哪些信息?
学生观察,小组交流获得信息,
师:用什么数来表示这组同学的掷沙包的水平呢?
生:学生小组中议一议算一算。
学生汇报交流,可能有小组算出了这组数的平均数
师:根据汇报板书27.7m
如果用27.7m这个成绩代表这组掷沙包的水平你没有异议么/?
生:观察数据特点,小组议一议,说一说。
生:发现两个同学的成绩太高
大多数同学的成绩都低于平均值,和平均数相差太远
用平均数表示这一组数据的一般水平不太合适,
那么用什么样的数表示呢?
学生这是可能有些困难,教师适时引导学生认识中位数
设计意图(创设问题情景,激发学生学习兴趣, ……此处隐藏28942个字……笔。教者借助统计图中平均数与其他数据的比较,形象地表示出极端数据与其他数据之间的差距,学生强烈地感受到:在一组个数不多的数据中,如果出现了极端数据,这时用平均数作为这组数据的代表已经不太合适,需要选用新的数据代表,从而激起学生寻找新的数据代表的心理需求。
4.你能从中选择一个数据来代表这7位老师跳绳的普遍水平吗?
学生充分地自主寻找,讨论交流,并说出想法。在有一些学生认为应选择102时,教者借助课件的动态演示,引导学生观察。
统计图中120周围的数据集中情况,再观察102周围的数据集中情况,并回答以下问题:
(1)在与平均数120上下相差5下范围内(115-125)的数据一共有多少个?(无)在与102上下相差5下范围内(97-107)的数据一共有多少个?(4个)
(2)在与平均数120上下相差10下范围内(110-130)的数据一共有多少个?(无)在与102上下相差10下范围内(92-112)的数据一共有多少个?(6个)
学生发现:102正好是这组数据中正中间的一个,比它大的有3个,比它小的也有3个。大部分学生觉得这时用102更能代表这7位老师跳绳的普遍水平。
教者鼓励学生试着给这个数起名,并说说想法。
5.揭示概念:一组个数不多的数据,如果它们的平均数受极端数据影响较大时,要用一种新的数来代表这组数据的整体特征。在把这些数据按大小顺序排列后,位于正中间的数就是这组数据的中位数。(板书课题)
6.教师移动板贴,交换102和93的位置,让93位于正中间,问:现在的中位数是93吗?
教者运用变式练习,让学生悟出在找中位数时,先要把一组数据按大小顺序排列,然后再找正中间的一个数。
7.现在用李老师的成绩107与中位数102比,你们觉得李老师的成绩怎样?(中等偏上)说明用中位数作为这组数据的代表既符合实际,又便于比较和判断。
8.如果杨老师跳得更多,是258下或288下,其他老师的成绩不变,这时平均数会变吗?中位数会变吗?引导学生推想,逐步感悟到平均数会受极端数据的影响,而中位数不会。
[评析]教者放手让学生独立思考,自主探索,合作交流,充分经历寻找新的数据代表的过程,从中感悟中位数的意义。特别是教者借助统计图进行直观形象的分析,分别在平均数和中位数上下浮动,让学生充分比较平均数和中位数代表性的强弱,通过对比促其逐步体会到在数据个数不多时,平均数受极端数据的影响较大,而中位数不受,且在中位数周围集中了很多的数据,这时选用中位数作为一组数据的代表更合适些。教者还把李老师的成绩与中位数相比,使学生初步领悟到中位数的作用,获得认知平衡。他们还感受到进行数据分析的价值和乐趣。
二、在自主寻找中体会中位数
1.如果赵老师也参加了此次跳绳比赛,他跳了98下,这时你会找下列这组数据的中位数吗?教者板贴增加一个数98。
学生先自主寻找,再讨论交流并比较合理性,最后创造出中位数:在把8个数据按大小顺序排列后,用正中间的两个数的平均数作为这组数据的中位数。即中位数是:(100+102)2=101。
2.找出下列每组数据的中位数。
(1)35、24、25、17、19
(2)39、19、29、25、2l、1l
学生自主寻找并交流,从而归纳出找奇数个、偶数个数据的中位数的方法。
3.现在你能说说怎样的数是中位数吗?
[评析]教者再次设计认知冲突,巧妙地将数据从7个增加到8个,激发学生进一步探索的欲望,促其积极思考,主动创造。学生主动运用刚获得的对中位数的认识解决问题,经历了再创造的过程,从中学会找中位数的方法,体会到中位数的意义,建立新的认知平衡。
三、在实际运用中领悟中位数
1.出示练一练:下面是第一小组9位同学家庭的'住房面积。(单位:平方米)
86、84、50、92、87、80、83、43、88
(1)这组数据的平均数和中位数各是多少?
(2)用哪个数据代表这9位同学家庭的住房情况比较合适?
(3)为什么这9个家庭住房面积的平均数比中位数低得多?
教师引导学生逐步解决上述问题。在回答问题(2)时,还特意选择其中的83或80与中位数进行比较,从而让学生体会到这里选用中位数做代表是合理的、有价值的。在回答问题(3)时,顺势说明这里的43与50对平均数也产生了较大的影响,也是极端数据。
2.出示李华同学5次数学测试的成绩:
前四次分别是96分、99分、95分、92分,第五次他带病考试,结果只考了58分。
(1)他5次考试的平均数和中位数各是多少?
(2)这时用哪个数据代表他的数学成绩比较合适?为什么?
(3)如果他第五次考了91分,这时用哪个数据代表他的数学成绩比较合适?为什么?
在回答问题(3)时,教者借助计算平均数和课件动态演示平均数的产生过程移多补少,引导学生感悟 到:如果一组数据未出现极端数据,当平均数与中位数又比较接近时,这时既可以用中位数,又可以用平均数作为这组数据的代表。相比之下,中位数只是其中的一个数据,而平均数集中了5次成绩,因而更精确些。
3.张强同学参加跳远比赛,预、决赛中共跳了6次,成绩如下表:(表中的表示犯规,无成绩)
你知道裁判用哪个数据代表张强的比赛成绩吗?
引导学生结合实际说明,这里既不选中位数,也不选平均数,而选最好成绩4.4。
[评析]教者有目的地选择一些具体数据,不断地让学生把平均数与中位数进行比较,引导学生多次经历寻找数据代表的过程,在解决实际问题的过程中,进一步明确各个统计量的意义和作用,感悟到它们之间的联系与区别,逐步体会到要根据数据的特点,具体地分析数据,灵活地选择数据代表;要根据不同的需要,选择合适的数据代表,做到具体数据具体分析,具体问题具体对待,不形成思维定势。
四、在拓展延伸中深化中位数
1.中国篮球明星姚明身高2.26米。假如他站在10名中国成年男子中,会对他们的平均身高产生较大的影响吗?(会)这时用哪个数代表这11名男子身高的普遍状况比较合适?(中位数)假如他站在一百名、一千名中国成年男子中,会对他们的平均身高产生较大的影响吗?(影响逐渐减小,直至无)这时用中位数作为这组数据的代表合适吗?应选用哪个数作为这些数据的代表更合适些?
2.学生说说中位数的意义、找法和作用,谈谈感受。
教者全课小结。(略)
[评析]为打破思维定势,发展数学思维,教者又一次设计了认知冲突,激起学生深入探究的兴趣,促使学生辩证地看待极端数据和中位数,合理地寻找数据代表。教者运用极限思想,引导学生逐步类比联想到:在数据个数很多时,极端数据对平均数的影响已不大,这时用中位数作为一组数据的代表已不太合适,而用平均数就比较精确和合适,从而使学生在更高层次上建立了认知平衡。



